
Chapter 6 Low-Density Parity-Check Codes

• 6.1 Introduction of LDPC Codes

• 6.2 Tanner Graph Representation

• 6.3 Encoding of LDPC Code

• 6.4 Belief Propagation Decoding

• 6.5 The Belief Propagation Decoding in Log Domain



• Introduction

– Proposed by Robert Gallager in 1962 [1].

– It was overlooked for over three decades until 1995, it was 
rediscovered by David Mackay [2].

– It is a linear block code defined by its sparse parity-check matrix which 
is inherently good for the belief propagation decoding.

– It can well approach the Shannon capacity with a decoding complexity 
that is quadratic in the dimension of the code. 

– Its potential applications include wireless communications and storage 
devices.

[1] R. Gallager, “Low-Density Parity-Check Codes,” IRE Trans. Inform. Theory, vol. IT-8, pp21-28, Jan, 1962.

[2] D. Mackay and R. Neal, “Good codes based on very sparse matrices”,  in the 5th IMA Conf. Cryptography and Coding,  lecture 

notes in Computer Science Springer. 1995.
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– LDPC code: A linear block code whose parity-check matrix H has sparse non-
zero elements. For a binary LDPC code, its matrix H has sparse 1s.

– Colum weight (wc): Number of 1s in a column of H.

Row weight (wr): Number of 1s in a row of H.

– Regular LDPC codes: Each column of H has the same column weight, and 
each row of the H has the same row weight. It is normally denoted as a (wc , 
wr , N) LDPC code, where N is the codeword length. 

– Irregular LDPC codes: The parity-check matrix has varying column weights 
and row weights.

– In general, irregular codes have better performance than regular codes. But 
irregular codes are more difficult to implement.
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– If all rows of H are independent, M = N - K. Otherwise M > N - K.

– Uniform row weight requires           . If M = N - K, then the code rate is   . 

If M > N- K , R > 1 - .  
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actual code rate design code rate

Example 6.1 A regular LDPC code has a parity-check matrix of

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

H = 

wc = 3, wr = 6, M = 5, N = 10.

M : Number of parity-check equations. The above matrix implies

z1 : c1 + c2 + c3 + c6 + c7+ c10 = 0

z2 : c1 + c3 + c5 + c6 + c8 + c9  = 0

z3 : c3 + c4 + c5 + c7 + c9 + c10 = 0

z4 : c2 + c4 + c5 + c6 + c8 + c10 = 0

z5 : c1 + c2 + c4 + c7 + c8 + c9 = 0
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§6.1 Introduction of LDPC Codes

Example 6.2 Construct a (3, 4, 20) regular LDPC code.

Given a based matrix A as ：

A =  

Let πi(A) denote a random permutation function that permutes the columns of A.
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The patiry-check matrix of the (3, 4, 20) regular LDPC code can be generated by

H = = 

Since there are 13 independent rows, the code's dimension is K = 20 - 13 = 7.

The rate of the code is R = 0.35 > 1- .

Q: Why is random permutation of columns of A necessary ?
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§6.2 Tanner Graph Representation

– The parity-check matrix H [hmn] can be represented as a Tanner graph.

– The parity-check matrix H of Example 6.1 can be shown as :

– The Tanner graph has two sets of nodes, the check nodes (zm) and the bit 

nodes (cn). There is a connection between zm and cn if hmn= 1.

– Belief propagation decoding of a LDPC code is performed based on a Tanner 

graph : propagating soft information between the check nodes and the bit 

nodes through the established connections.

1087654321 9 cccccccccc

54321 z   zz   z  z
check nodes

bit nodes



§6.2 Tanner Graph Representation

– Nm = {n : hmn = 1} — The set of bits that participate the check zm. 

E.g., N1 = {1, 2, 3, 6, 7, 10}, N3={3, 4, 5, 7, 9, 10}.

– Nm\n — The set of bits except cn that participate check zm. 

E.g., N1\3 = {1, 2, 6, 7, 10}.

– Mn = {m : hmn = 1} — The set of checks in which bit cn is involved. 

E.g., M1 = {1, 2, 5}, M10 = {1, 3, 4}.

– Mn\m — The set of checks except check zm in which bit cn is involved. 

E.g., M1\2 = {1, 5}.

check nodes

bit nodes

1087654321 9 cccccccccc

54321 z   zz   z  z



§6.2 Tanner Graph Representation

– For a regular LDPC code, every check node is connected to |Nm| bit nodes 

where |Nm| = wr, and every bit node is connected to |Mn| check nodes where 

|Mn| = wc.

– Girth : the shortest cycle in a Tanner graph and it is ≥ 4. It is desirable to avoid 

a LDPC code whose Tanner graph has a girth of 4 as it would degrade the 

decoding performance. (In the above Tanner graph, the highlighted cycle is of 

length 4 and hence the LDPC code has a girth of 4.)
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– By performing Gaussian elimination, a parity-check matrix H can be 
transformed into

𝐇 = [ 𝐈𝑀 𝐏 ]
where IM is a M×M identity matrix.

– Its corresponding generator matrix G can be written as :

𝐆 = [ 𝐏𝑇 𝐈𝐾]
where IK is a K×K identity matrix.

– Encoding of a K dimensional message vector ഥ𝑚 = [𝑚1, 𝑚2, … ,𝑚𝐾]
is done by 

§6.3 Encoding of LDPC Codes

ҧ𝑐 = ഥ𝑚 ∙ 𝐆

= 𝑐1, 𝑐2, … , 𝑐𝑁−𝐾 , 𝑐𝑁−𝐾+1, … , 𝑐𝑁

= 𝑝1, 𝑝2, … , 𝑝𝑁−𝐾 , 𝑚1, … ,𝑚𝐾 .



Example 6.3 By performing Gaussian eliminition on the matrix H of Example 6.1, we have

H = 

Hence, the generator matrix G is

G =  

If the message vector is    , the codeword ҧ𝑐 is generated as
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– Belief Propagation (BP) decoding is performed based on the Tanner graph of 

the LDPC code.

– Optimal decoding estimates a codeword by maximizing

Pr

Its complexity is O(2K).

– Suboptimal decoding estimates individual coded bit cn by maximizing

Pr

Its complexity is O(K2).

– BP decoding is a sub-optimal decoding algorithm.

§6.4 Belief Propagation Decoding
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– BP decoding is to update the following two probabilities iteratively.

1. The probability of bit    conditioned on all its associated 

checks except zm are satisfied, i.e.,

(1)

2. The probability of check zm is satisfied conditioned on bit , i.e.,

(2)

§6.4 Belief Propagation Decoding
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– Since there are N coded bits and M checks, qmn(θ) and rmn(θ) should be 

accommodated in matrices Q and R, respectively. Q and R are of size 2M×N.

– BP decoding iterations Q R.

– After a number of iterations, the decision on all the bits cn is made based on Q

by

(3)

§6.4 Belief Propagation Decoding





























=

)1(......)1()1(

)0(......)0()0(

:......::

)1(......)1()1(

)0(......)0()0(

)1(......)1()1(

)0(......0)0(

21

21

22221

22221

11211

11211

MNMM

MNMM

N

N

N

N

qqq

qqq

qqq

qqq

qqq

qqq ）（

Q





























=

)1(......)1()1(

)0(......)0()0(

:......::

)1(......)1()1(

)0(......)0()0(

)1(......)1()1(

)0(......0)0(

21

21

22221

22221

11211

11211

MNMM

MNMM

N

N

N

N

rrr

rrr

rrr

rrr

rrr

rrr ）（

R

Horizontal update

Vertical update

( ) Pr[ | 0, ]n n m nq c z m M = = = 



– Initialization:

Given a received symbol vector    , one could obtain the channel observations 

for all the bits as

, , … , 

Matrix Q is initialized by
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– Horizontal update: update R by Q.

With for ensures check zm is satisfied, i.e.,  

– Example 6.4 For the LDPC code of Example 6.1, if we want to update 

r11(1) = Pr[z1 = 0 | c1 = 1], we need the remaining bits of z1 satisfy c2+c3+c6+c7+c10=1. 

Bits c2 c3 c6 c7 c10 have the following 16 permutations:

10000, 01000, 00100, 00010, 00001, 11100, 01110, 00111,

11001, 11010, 01101, 10101, 10011, 01011, 10110, 11111.

Hence, r11(1) is updated by summing the following 16 products.
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§6.4 Belief Propagation Decoding

– Horizontal update: update R by Q

– Tanner graph reflection.

• The update of r11(1) of Example 6.4 can be seen as
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– Vertical update: update Q by R.

αmn is a normalization factor that ensures qmn(0) + qmn(1) = 1, i.e.,

– Example 6.5 (Continue from Example 6.4), if we want to apdate

we need to calculate
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§6.4 Belief Propagation Decoding

– Vertical update: update Q by R

– Tanner graph reflection.

• The update of q11(θ) of Example 6.5 can be seen as
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– After each horizontal-vertical iterations, we can calculate qn(θ) of (3) by

αn is a normalization factor that ensures qn(0) + qn(1) = 1.

– Decision on bit cn

– After decisions are made on all the coded bits, we can obtain an estimated 

codeword    . The iteration will be terminated if     is a valid codeword, i.e., 

. Otherwise, the iterative horizontal-vertical updates continue until

is satisfied, or the designed maximal iteration number is reached.

– The BP decoding algorithm is also called the Sum-Product algorithm.
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§6.4 Belief Propagation Decoding

Why low density of H is important for BP decoding ?

– The Horizontal update computation of  assumes that all the coded 

bits are independent.

– However, once cycles exist in the Tanner graph, this independence

will disappear. For example, when two coded bits are involved in the same 

two checks, a cycle of length 4 will exist in the Tanner graph.

– A low density H inherits less cycles especially the cycles of length 4. The BP 

decoding would favour this type of code — low-density parity-check codes.
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§6.4 Belief Propagation Decoding

Why low density of H is important for BP decoding ?

Example 6.6 Let us look at BP decoding of the LDPC code of Example 6.1.

– By examing the Tanner graph, we can see coded bits c1 and c2 are involved in both 

checks z1 and z5, yielding a cycle of length 4.

– Horizontal update : r11(θ) q12(θ),   q13(θ), q16(θ), q17(θ), q1,10(θ)

r12(θ) q11(θ),   q13(θ), q16(θ), q17(θ), q1,10(θ)

： ：

r51(θ) q52(θ),   q54(θ), q57(θ), q58(θ), q59(θ)

r52(θ) q51(θ),   q54(θ), q57(θ), q58(θ), q59(θ)

– Vertical update : q11(θ) r21(θ),   r51(θ)

q12(θ) r42(θ),   r52(θ)

– Observations:

1) process, bits c1 and c2 start to correlate.

2) process, part of the information used to update rmn(θ) comes for cn itself.
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Example 6.7 (Continue from Example 6.3). If the LDPC codeword

is transmitted to a memoryless channel, with the 

received symbol vector     , we obtain the channel observation matrix F as

Matrix Q is initialized as :

Q =  
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After the 1st Horizontal-Vertical iteration, we have

R = 

§6.4 Belief Propagation Decoding







































0502827.0497563.0502209.000535338.00502079.0502524.0

0497173.0502437.0497791.000464662.00497921.0497476.0

500584.00500523.00500410.0503035.0492412.00499554.00

499416.00499477.00499590.0496965.0507588.00500446.00

500397.0499587.00499678.00502063.0494842.0499667.000

499603.0500413.00500322.00497937.0505158.0500333.000

0507451.0493577.00494966.0462745.00506009.00506653.0

0493347.0506423.00505034.0537255.00493991.00493347.0

555908.000454575.0539286.000453110.0457247.0448086.0

444092.000545425.0460714.000546890.0542753.0551914.0



Q = 

Hence, the a posteriori probability matrix Q' is :

Q' =  

The estimated codeword is . It does not satisfy 

and the iteration continues...
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After the 3rd Horizontal-Vertical iteration, we have

R =
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Q = 

The a posteriori probability matrix Q' becomes :

Q' =  

The estimated codeword is . It satisfies

and the decoding terminates.
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§6.4 Belief Propagation Decoding

– AWGN channel, BPSK modulation

– Design code rate: 0.5
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§6.5 The BP Decoding in Log Domain

– The probability based BP decoding algorithm can be simplified in Log 

Domain.

– The Log-Likelihood Ratio (LLR) of bit cn is defined as :

– Matrices Q and R can be reduced to M×N matrices collecting 

LLR values qmn and rmn, respectively.
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§6.5 The BP Decoding in Log Domain

– Consequently, the BP decoding in the Log Domain becomes:

Initialization : 

Horizontal update :

Vertical update :

Decision metrics:
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