

Chapter 6 Low-Density Parity-Check Codes

- 6.1 Introduction of LDPC Codes
- 6.2 Tanner Graph Representation
- 6.3 Encoding of LDPC Code
- 6.4 Belief Propagation Decoding
- 6.5 The Belief Propagation Decoding in Log Domain

• Introduction

- Proposed by Robert Gallager in 1962 [1].
- It was overlooked for over three decades until 1995, it was rediscovered by David Mackay [2].
- It is a linear block code defined by its sparse parity-check matrix which is inherently good for the belief propagation decoding.
- It can well approach the Shannon capacity with a decoding complexity that is quadratic in the dimension of the code.
- Its potential applications include wireless communications and storage devices.

[1] R. Gallager, "Low-Density Parity-Check Codes," IRE Trans. Inform. Theory, vol. IT-8, pp21-28, Jan, 1962.

[2] D. Mackay and R. Neal, "Good codes based on very sparse matrices", in *the 5th IMA Conf. Cryptography and Coding*, lecture notes in Computer Science Springer. 1995.

- LDPC code: A linear block code whose parity-check matrix H has sparse nonzero elements. For a binary LDPC code, its matrix H has sparse 1s.
- Colum weight (w_c) : Number of 1s in a column of **H**. Row weight (w_r) : Number of 1s in a row of **H**.
- Regular LDPC codes: Each column of **H** has the same column weight, and each row of the **H** has the same row weight. It is normally denoted as a (w_c, w_r, N) LDPC code, where N is the codeword length.
- Irregular LDPC codes: The parity-check matrix has varying column weights and row weights.
- In general, irregular codes have better performance than regular codes. But irregular codes are more difficult to implement.

Example 6.1 A regular LDPC code has a parity-check matrix of

 $\mathbf{H} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \\ z_5 \end{bmatrix}$

 $w_c = 3, w_r = 6, M = 5, N = 10.$

M : Number of parity-check equations. The above matrix implies

 $z_{1}: c_{1} + c_{2} + c_{3} + c_{6} + c_{7} + c_{10} = 0$ $z_{2}: c_{1} + c_{3} + c_{5} + c_{6} + c_{8} + c_{9} = 0$ $z_{3}: c_{3} + c_{4} + c_{5} + c_{7} + c_{9} + c_{10} = 0$ $z_{4}: c_{2} + c_{4} + c_{5} + c_{6} + c_{8} + c_{10} = 0$ $z_{5}: c_{1} + c_{2} + c_{4} + c_{7} + c_{8} + c_{9} = 0$ If all rows of **H** are independent, M = N - K. Otherwise M > N - K.

- Uniform row weight requires $\frac{w_r}{N} = \frac{w_c}{M}$. If M = N - K, then the code rate is $R = \frac{K}{N} = 1 - \frac{M}{N} = 1 - \frac{w_c}{w_r}$. If M > N - K, $R > 1 - \frac{w_c}{w_r}$.

Example 6.2 Construct a (3, 4, 20) regular LDPC code.

Given a based matrix A as :

Let $\pi_i(\mathbf{A})$ denote a random permutation function that permutes the columns of \mathbf{A} .

The patiry-check matrix of the (3, 4, 20) regular LDPC code can be generated by

	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0
$\mathbf{H} \equiv \pi_1(\mathbf{A}) \equiv$	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
$\pi_2(\mathbf{A})$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
	1	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
	0	1	0	0	0	1	0	0	0	1	0	0	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	1	0	0	0	0	0	0	1	0	0	0	1	0	0
	0	0	0	1	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0
	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1
	1	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0
	0	1	0	0	0	0	1	0	0	0	1	0	0	0	0	1	0	0	0	0
	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	1	0
	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	1	0	0	0
	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1

Since there are 13 independent rows, the code's dimension is K = 20 - 13 = 7. The rate of the code is $R = 0.35 > 1 - \frac{W_c}{W_r}$. *Q: Why is random permutation of columns of A necessary ?*

§ 6.2 Tanner Graph Representation

- The parity-check matrix **H** $[h_{mn}]$ can be represented as a Tanner graph.
- The parity-check matrix **H** of **Example 6.1** can be shown as :

- The Tanner graph has two sets of nodes, the check nodes (z_m) and the bit nodes (c_n) . There is a connection between z_m and c_n if $h_{mn} = 1$.
- Belief propagation decoding of a LDPC code is performed based on a Tanner graph : propagating soft information between the check nodes and the bit nodes through the established connections.

§ 6.2 Tanner Graph Representation

- $N_m = \{n : h_{mn} = 1\}$ The set of bits that participate the check z_m . E.g., $N_1 = \{1, 2, 3, 6, 7, 10\}, N_3 = \{3, 4, 5, 7, 9, 10\}.$
- $N_{m\setminus n}$ The set of bits except c_n that participate check z_m . E.g., $N_{1\setminus 3} = \{1, 2, 6, 7, 10\}.$
- $M_n = \{m : h_{mn} = 1\}$ The set of checks in which bit c_n is involved. E.g., $M_1 = \{1, 2, 5\}, M_{10} = \{1, 3, 4\}.$
- $M_{n\setminus m}$ The set of checks except check z_m in which bit c_n is involved. E.g., $M_{1\setminus 2} = \{1, 5\}$.

§ 6.2 Tanner Graph Representation

- For a regular LDPC code, every check node is connected to $|N_m|$ bit nodes where $|N_m| = w_r$, and every bit node is connected to $|M_n|$ check nodes where $|M_n| = w_c$.
- Girth : the shortest cycle in a Tanner graph and it is ≥ 4. It is desirable to avoid a LDPC code whose Tanner graph has a girth of 4 as it would degrade the decoding performance. (In the above Tanner graph, the highlighted cycle is of length 4 and hence the LDPC code has a girth of 4.)

§ 6.3 Encoding of LDPC Codes

 By performing Gaussian elimination, a parity-check matrix H can be transformed into

$$\mathbf{H} = \begin{bmatrix} \mathbf{I}_M & \mathbf{P} \end{bmatrix}$$

where \mathbf{I}_M is a $M \times M$ identity matrix.

- Its corresponding generator matrix **G** can be written as : $\mathbf{G} = [\mathbf{P}^T \mid \mathbf{I}_K]$ where \mathbf{I}_K is a $K \times K$ identity matrix.
- Encoding of a *K* dimensional message vector $\overline{m} = [m_1, m_2, ..., m_K]$ is done by

$$\bar{c} = \bar{m} \cdot \mathbf{G}$$

$$= [c_1, c_2, \dots, c_{N-K}, c_{N-K+1}, \dots, c_N]$$

$$= [p_1, p_2, \dots, p_{N-K}, m_1, \dots, m_K].$$

§ 6.3 Encoding of LDPC Codes

Example 6.3 By performing Gaussian eliminition on the matrix H of Example 6.1, we have

$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Hence, the generator matrix **G** is

$$\mathbf{G} = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 & | & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & | & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & | & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & | & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & | & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

If the message vector is $\overline{m} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \end{bmatrix}$, the codeword \overline{c} is generated as
 $\overline{c} = \overline{m} \cdot \mathbf{G} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$

- Belief Propagation (BP) decoding is performed based on the Tanner graph of the LDPC code.
- Optimal decoding estimates a codeword by maximizing
 Pr [c̄ | z_m = 0, ∀m]
 Its complexity is O(2^K).
- Suboptimal decoding estimates individual coded bit c_n by maximizing
 Pr [c_n = θ | z_m = 0, m ∈ M_n], θ ∈ {0,1}
 Its complexity is O(K²).
- BP decoding is a sub-optimal decoding algorithm.

- BP decoding is to update the following two probabilities iteratively.
- 1. The probability of bit $c_n = \theta$ ($\theta \in \{0,1\}$) conditioned on all its associated checks except z_m are satisfied, i.e.,

$$q_{mn}(\theta) = \Pr[c_n = \theta \mid z_m' = 0, m' \in M_n \setminus m]$$
(1)

2. The probability of check z_m is satisfied conditioned on bit $c_n = \theta$, i.e.,

$$r_{mn}(\theta) = \Pr[z_m = 0 | c_n = \theta]$$
⁽²⁾

- Since there are N coded bits and M checks, $q_{mn}(\theta)$ and $r_{mn}(\theta)$ should be accommodated in matrices **Q** and **R**, respectively. **Q** and **R** are of size $2M \times N$.

	$q_{11}(0)$	<i>q</i> 12(0)	•••	•••	$q_{1N}(0)$		$r_{11(0)}$	r_{12} (0)		•••	$r_{1N}(0)$
	<i>q</i> 11(1)	<i>q</i> 12(1)	•••	•••	$q_{1N}(1)$		<i>r</i> 11(1)	<i>r</i> 12(1)	•••	•••	$r_{1N}(1)$
	<i>q</i> 21(0)	q22(0)	••••	•••	$q_{2N}(0)$		r21(0)	r22(0)	•••	•••	$r_{2N}(0)$
Q =	<i>q</i> 21(1)	q22(1)	•••	•••	<i>q</i> 2 <i>N</i> (1)	R =	r21(1)	r22(1)	•••	•••	$r_{2N}(1)$
	:	:	••••	••••	•		•	:	•••	•••	
	<i>qM</i> 1(0)	<i>qм</i> 2(0)	••••	••••	$q_{MN}(0)$		<i>rm</i> 1(0)	<i>rм</i> 2(0)	•••	•••	$r_{MN}(0)$
	<i>qM</i> 1(1)	<i>qм</i> 2(1)	•••	•••	$q_{MN}(1)$		<i>rm</i> 1(1)	<i>rм</i> 2(1)	•••	•••	$r_{MN}(1)$

- BP decoding iterations $Q \xrightarrow{\text{Horizontal update}} \mathbf{R}$.
- After a number of iterations, the decision on all the bits c_n is made based on **Q** by

$$q_n(\theta) = \Pr[c_n = \theta \mid z_m = 0, m \in M_n]$$
(3)

– Initialization:

Given a received symbol vector \overline{y} , one could obtain the channel observations for all the bits as

$$\begin{cases} f_1(0) = \Pr[c_1 = 0 \mid \overline{y}] \\ f_1(1) = \Pr[c_1 = 1 \mid \overline{y}] \end{cases}, \begin{cases} f_2(0) = \Pr[c_2 = 0 \mid \overline{y}] \\ f_2(1) = \Pr[c_2 = 1 \mid \overline{y}] \end{cases}, \dots, \begin{cases} f_n(0) = \Pr[c_n = 0 \mid \overline{y}] \\ f_n(1) = \Pr[c_n = 1 \mid \overline{y}] \end{cases}$$

Matrix \mathbf{Q} is initialized by

$$q_{mn}(\theta) = f_n(\theta) \cdot h_{mn}, \forall m, n, \theta \in \{0, 1\}$$

- Horizontal update: update R by Q.

$$r_{mn}(\theta) = \sum_{\substack{\theta_n = \sum \\ n' \in Nm \setminus n}} \prod_{n' \in Nm \setminus n} q_{mn'}(\theta)$$

With $c_n = \theta_n$, $\theta_n = \sum \theta_n$ for $n' \in N_{m \setminus n}$ ensures check z_m is satisfied, i.e., $z_m = \sum_{n \in N_m} c_n = \theta_n + \sum_{n' \in N_m \setminus n} \theta_{n'} = 0$

- **Example 6.4** For the LDPC code of **Example 6.1**, if we want to update $r_{11}(1) = \Pr[z_1 = 0 | c_1 = 1]$, we need the remaining bits of z_1 satisfy $c_2+c_3+c_6+c_7+c_{10}=1$. Bits $c_2 c_3 c_6 c_7 c_{10}$ have the following 16 permutations:

10000, 01000, 00100, 00010, 00001, 11100, 01110, 00111, 11001, 11010, 01101, 10101, 10011, 01011, 10110, 11111.

Hence, $r_{11}(1)$ is updated by summing the following 16 products.

 $\left.\begin{array}{c}q_{12}(1)q_{13}(0)q_{16}(0)q_{17}(0)q_{10}(0)\\\vdots\end{array}\right\}$

 $q_{12}(1)q_{13}(1)q_{16}(1)q_{17}(1)q_{10}(1)$

– Horizontal update: update R by Q

$$r_{mn}(\theta) = \sum_{\substack{\theta_n = \sum \\ n' \in Nm \setminus n}} \prod_{n' \in Nm \setminus n} q_{mn'}(\theta)$$

- Tanner graph reflection.
 - The update of $r_{11}(1)$ of **Example 6.4** can be seen as

- Vertical update: update Q by R.

$$q_{mn}(\theta) = \alpha_{mn} \cdot f_n(\theta) \cdot \prod_{m' \in M_n \setminus m} r_{m'n}(\theta)$$

 $\alpha_{mn} \text{ is a normalization factor that ensures } q_{mn}(0) + q_{mn}(1) = 1, \text{ i.e.,}$ $\alpha_{mn} = \left[\sum_{\theta \in \{0,1\}} f_n(\theta) \cdot \prod_{m' \in M_n \setminus m} r_{m'n}(\theta)\right]^{-1}$

- Example 6.5 (Continue from Example 6.4), if we want to apdate

$$q_{II}(\theta) = \Pr[c_{I} = \theta \mid z_{m'} = 0, m' \in M_{I\setminus I}]$$

we need to calculate

$$q_{11}(0) = \alpha_{11} \cdot f_{1}(0) \cdot (r_{21}(0) \times r_{51}(0))$$
$$q_{11}(1) = \alpha_{11} \cdot f_{1}(1) \cdot (r_{21}(1) \times r_{51}(1))$$

– Vertical update: update Q by R

$$q_{mn}(\theta) = \alpha_{mn} \cdot f_n(\theta) \cdot \prod_{m' \in Mn \setminus m} r_{m'n}(\theta)$$

- Tanner graph reflection.
 - The update of $q_{11}(\theta)$ of **Example 6.5** can be seen as

- After each horizontal-vertical iterations, we can calculate $q_n(\theta)$ of (3) by $q_n(\theta) = \alpha_n \cdot f_n(\theta) \cdot \prod_{m \in M_n} r_{mn}(\theta)$ α_n is a normalization factor that ensures $q_n(0) + q_n(1) = 1$. $\alpha_n = \left[\sum_{\theta \in \{0,1\}} f_n(\theta) \cdot \prod_{m \in M_n} r_{mn}(\theta)\right]^{-1}$ - Decision on bit c_n $\begin{cases} c_n = 0, & \text{if } q_n(0) > q_n(1) \\ c_n = 1, & \text{if } q_n(0) < q_n(1) \end{cases}$
- After decisions are made on all the coded bits, we can obtain an estimated codeword ĉ. The iteration will be terminated if ĉ is a valid codeword, i.e., ĉ ⋅ H^T = 0. Otherwise, the iterative horizontal-vertical updates continue until ĉ ⋅ H^T = 0 is satisfied, or the designed maximal iteration number is reached.
 The BP decoding algorithm is also called the **Sum-Product algorithm**.

Why low density of H is important for BP decoding ?

- The Horizontal update computation of $\prod_{n' \in N_m \setminus n} q_{mn'}(\theta)$ assumes that all the coded bits are independent.
- However, once cycles exist in the Tanner graph, this independence will disappear. For example, when two coded bits are involved in the same two checks, a cycle of length 4 will exist in the Tanner graph.
- A low density H inherits less cycles especially the cycles of length 4. The BP decoding would favour this type of code low-density parity-check codes.

Why low density of H is important for BP decoding ?

Example 6.6 Let us look at BP decoding of the LDPC code of **Example 6.1**.

- By examing the Tanner graph, we can see coded bits c_1 and c_2 are involved in both checks z_1 and z_5 , yielding a cycle of length 4.
- Horizontal update :

- Vertical update :
- Observations:
 - 1) (1)–(2) process, bits c_1 and c_2 start to correlate.

2) (1) – (2) – (3) process, part of the information used to update $r_{mn}(\theta)$ comes for c_n itself.

Example 6.7 (Continue from **Example 6.3**). If the LDPC codeword $\overline{c} = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$ is transmitted to a memoryless channel, with the received symbol vector \overline{y} , we obtain the channel observation matrix **F** as

$$\mathbf{F} = \begin{bmatrix} 0.78 & 0.84 & 0.81 & 0.52 & 0.45 & 0.13 & 0.82 & 0.21 & 0.75 & 0.24 \\ 0.22 & 0.16 & 0.19 & 0.48 & 0.55 & 0.87 & 0.18 & 0.79 & 0.25 & 0.76 \end{bmatrix}$$

Matrix **Q** is initialized as :

	0.78	0.84	0.81	0	0	0.13	0.82	0	0	0.24
	0.22	0.16	0.19	0	0	0.87	0.18	0	0	0.76
	0.78	0	0.81	0	0.45	0.13	0	0.21	0.75	0
	0.22	0	0.19	0	0.55	0.87	0	0.79	0.25	0
Q =	0	0	0.81	0.52	0.45	0	0.82	0	0.75	0
	0	0	0.19	0.48	0.55	0	0.18	0	0.25	0.76
	0	0.84	0	0.52	0.45	0.13	0	0.21	0	0.24
	0	0.16	0	0.48	0.55	0.87	0	0.79	0	0.76
	0.78	0.84	0	0.52	0	0	0.82	0.21	0.75	0
	0.22	0.16	0	0.48	0	0	0.18	0.79	0.25	0
				•	•		-			-

After the 1st Horizontal-Vertical iteration, we have

	0.551914	0.542753	0.546890	0	0	0.460714	0.545425	0	0	0.444092
	0.448086	0.457247	0.453110	0	0	0.539286	0.454575	0	0	0.555908
	0.493347	0	0.493991	0	0.537255	0.505034	0	0.506423	0.493347	0
	0.506653	0	0.506009	0	0.462745	0.494966	0	0.493577	0.507451	0
R =	0	0	0.500333	0.505158	0.497937	0	0.500322	0	0.500413	0.499603
	0	0	0.499667	0.494842	0.502063	0	0.499678	0	0.499587	0.500397
	0	0.500446	0	0.507588	0.496965	0.499590	0	0.499477	0	0.499416
	0	0.499554	0	0.492412	0.503035	0.500410	0	0.500523	0	0.500584
	0.497476	0.497921	0	0.464662	0	0	0.497791	0.502437	0.497173	0
	0.502524	0.502079	0	0.535338	0	0	0.502209	0.497563	0.502827	0

	0.773636	0.839121	0.806481	; 0	0	0.132106	0.818884	0	0	0.239285
	0.226364	0.160879	0.193519	0	0	0.867894	0.181116	0	0	0.760715
	0.812140	0	0.837461	0	0.444958	0.113039	0	0.211273	0.748185	0
0	0.187860	0	0.162539	0	0.555042	0.886961	0	0.788727	0.251815	0
	0	0	0.833978	0.492203	0.484126	0	0.844187	0	0.742212	0.201076
Q =	0	0	0.166022	0.507797	0.515874	0	0.155813	0	0.257788	0.798924
	0	0.860727	0	0.489773	0.485097	0.115241	0	0.215940	0	0.201196
	0	0.139273	0	0.5110227	0.514903	0.884759	0	0.784060	0	0.798804
	0.809608	0.861934	0	0.532711	0	0	0.845514	0.213942	0.744684	0
	0.190392	0.138066	0	0.467289	0	0	0.154486	0.786058	0.255316	0

Hence, the *a posteriori* probability matrix \mathbf{Q}' is :

 $\mathbf{Q}' = \begin{bmatrix} 0.808046 & 0.860941 & 0.834162 & 0.497361 & 0.482065 & 0.115074 & 0.844356 & 0.215586 & 0.742528 & 0.200821 \\ 0.191954 & 0.139059 & 0.165838 & 0.502639 & 0.517935 & 0.884926 & 0.155644 & 0.784414 & 0.257472 & 0.799179 \end{bmatrix}$

The estimated codeword is $\hat{c} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$. It does not satisfy $\hat{c} \cdot \mathbf{H}^{\mathrm{T}} = 0$ and the iteration continues...

After the 3rd Horizontal-Vertical iteration, we have

R

	0.549960	0.540086	0.544369	0	0	0.463092	0.542650	0	0	0.447890
0.450040 0.493114 0.506886 0	0.459914	0.455631	0	0	0.536908	0.457350	0	0	0.552110	
	0.493114	0	0.493650	0	0.545393	0.505532	0	0.507453	0.491301	0
	0.506886	0	0.506350	0	0.454607	0.494468	0	0.492547	0.508699	0
	0	0	0.499989	0.500176	0.502649	0	0.499989	0	0.499985	0.500012
	0	0	0.500011	0.499824	0.497351	0	0.500011	0	0.500015	0.499988
	0	0.499975	0	0.500415	0.503915	0.500023	0	0.500032	0	0.500030
	0	0.500025	0	0.499585	0.496085	0.49977	0	0.499968	0	0.499970
	0.496595	0.497094	0	0.457904	0	0	0.496955	0.503693	0.495668	0
	0.503405	0.502906	0	0.542096	0	0	0.503045	0.496307	0.504332	0

Q =	
------------	--

0.772854	0.838418	0.806053	0	0	0.132534	0.818189	0	0	0.240031
0.227146	0.161582	0.193947	0	0	0.867466	0.181811	0	0	0.759969
0.810391	0	0.835883	0	0.456507	0.114117	0	0.212482	0.746725	0
0.189609	0	0.164117	0	0.543493	0.885823	0	0.787518	0.253275	0
0	0	0.832375	0.478244	0.499266	0	0.842265	0	0.740099	0.230955
0	0	0.167625	0.521756	0.500734	0	0.157735	0	0.259901	0.796045
0	0.859034	0	0.478005	0.498000	0.116425	0	0.217493	0	0.203943
0	0.140996	0	0.521995	0.502000	0.83575	0	0.782507	0	0.796057
0.808242	0.860424	0	0.520590	0	0	0.843871	0.215010	0.743407	0
0.191758	0.139576	0	0.479410	0	0	0.156129	0.784990	0.256593	0

The *a posteriori* probability matrix **Q'** becomes :

 $\mathbf{Q'} = \begin{bmatrix} 0.806122 & 0.859023 & 0.832369 & 0.478419 & 0.501915 & 0.116434 & 0.842260 & 0.217514 & 0.740088 & 0.203963 \\ 0.193878 & 0.140977 & 0.167631 & 0.521581 & 0.498085 & 0.883566 & 0.157740 & 0.782486 & 0.259913 & 0.796037 \end{bmatrix}$

The estimated codeword is $\hat{c} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$. It satisfies $\hat{c} \cdot \mathbf{H}^{\mathrm{T}} = 0$ and the decoding terminates.

- AWGN channel, BPSK modulation
- Design code rate: 0.5

§ 6.5 The BP Decoding in Log Domain

- The probability based BP decoding algorithm can be simplified in Log Domain.
- The Log-Likelihood Ratio (LLR) of bit c_n is defined as :

$$L_n = \ln \frac{f_n(0)}{f_n(1)} = \ln \frac{\Pr[c_n = 0 \mid \overline{y}]}{\Pr[c_n = 1 \mid \overline{y}]}$$

- Matrices **Q** and **R** can be reduced to $M \times N$ matrices collecting LLR values q_{mn} and r_{mn} , respectively.

§ 6.5 The BP Decoding in Log Domain

- Consequently, the BP decoding in the Log Domain becomes: Initialization : $q_{mn} = L_n \cdot h_{mn}, \forall m, n$

Horizontal update :

$$r_{mn} = 2 \tanh^{-1} \left(\prod_{n' \in N_{m \setminus n}} \tanh(\frac{q_{mn'}}{2})\right)$$

Vertical update : q_{mn}

$$T_{mn} = L_n + \sum_{m' \in M_n \setminus m} r_{m'n}$$

Decision metrics: $q_n = L_n$

$$q_n = L_n + \sum_{m' \in M_n} r_{m'n}$$

If $q_n \ge 0$, $\hat{c}_n = 0$, otherwise if $q_n < 0$, $\hat{c}_n = 1$.